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The theory of polarized neutron reflectometry has long been worked out, and the amplitude of the re-
flected and transmitted waves (at large distances from the sample) can be easily calculated using available
computer code. When using the one-dimensional reflectivity theory in the special case of the distorted-
wave Born approximation (DWBA), the amplitudes of the wavefunctions are needed inside the sample as
well, and in this paper we describe the implementation of this calculation.

SPIN-POLARIZED NEUTRON REFLECTIVITY

The theory of polarized neutron reflectivity is thoroughly
described in the literature [1]. The two coupled equations
describing the spin-dependent wavefunction are

[
∂2

∂z2
+
Q2

4
− 4πρ++(z)

]
ψ+(z)− 4πρ+−(z)ψ−(z) = 0[

∂2

∂z2
+
Q2

4
− 4πρ−−(z)

]
ψ−(z)− 4πρ−+(z)ψ+(z) = 0

(1)

where(
ρ++ ρ+−
ρ−+ ρ−−

)
=

(
Nb+Npz Npx − iNpy
Npx + iNpy Nb−Npz

)
(2)

The ẑ direction in the sample coordinate system is the sur-
face normal, which is of course also the direction of the
momentum transfer ~Q. As described in [1], the two cou-
pled equations can be combined to give two fourth-order
uncoupled equations, and if we use a solution of the form
ψ = exp(Sz) the four roots of S are

S1 =
√
4π(Nb+Np)−Q2/4

S2 = −S1

S3 =
√
4π(Nb−Np)−Q2/4

S4 = −S3

(3)

and the total wavefunction is the combination of one that
is spin-up and one that is spin-down (in the sample refer-
ence frame.)

Ψ(z) =

(
ψ+(z)
ψ−(z)

)
ψ+(z) =

4∑
j=1

Cje
Sjz

ψ−(z) =
4∑

j=1

Dje
Sjz

(4)

The coupling from the first equation leads to a re-
lationship between the coefficients of the two sub-
wavefunctions:

Dj = µjCj (5)

where

µ1 =
1+cos θM+i sin θM cosφM−sin θM sinφM

1+cos θM−i sin θM cosφM+sin θM sinφM

µ2 = µ1

µ3 =
−1+cos θM+i sin θM cosφM−sin θM sinφM

−1+cos θM−i sin θM cosφM+sin θM sinφM

µ4 = µ3

(6)

(θM is the in-plane x̂-ŷ rotation vector, zero at x̂, φM is
the out-of-plane component along ẑ), but in the case where
the z-component of the magnetization is held to be zero (or
constant through fronting/sample/backing) the angle φM is
zero, and µ is

µ1 = µ2 = eiθM

µ3 = µ4 = −eiθM (7)

Then we can write a column vector for Ψ(z) and Ψ′(z)
representing all the wavefunction terms that are continuous
in the solution, as the second-order Schrödinger equation
requires.

ψ+(z)
ψ−(z)
ψ′

+(z)
ψ′

−(z)

 = χ

C1

C2

C3

C4

 (8)

where

χ =


eS1z e−S1z eS3z e−S3z

µeS1z µe−S1z −µeS3z −µe−S3z

S1e
S1z −S1e

−S1z S3e
S3z −S3e

−S3z

µS1e
S1z −µS1e

−S1z −µS3e
S3z µS3e

−S3z


(9)

or, separating out the z-dependent terms within a layer

χ =


1 1 1 1

µ µ −µ −µ
S1 −S1 S3 −S3

µS1 −µS1 −µS3 µS3


l


eS1z 0 0 0

0 e−S1z 0 0

0 0 eS3z 0

0 0 0 e−S3z


(10)

The inverse of the first (z-independent) matrix above al-
lows one to calculate the Cj in terms of Ψ(z = 0)

1

4


1 1

µ
1
S1

1
µS1

1 1
µ

−1
S1

−1
µS1

1 −1
µ

1
S3

−1
µS3

1 −1
µ

−1
S3

1
µS3



ψ+(0)

ψ−(0)

ψ′
+(0)

ψ′
−(0)

 =


C1

C2

C3

C4

 (11)
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Note that substituting the left side of Eq. 11 into the right
side of Eq. 8 gives the transfer matrix:ψ+(z)

ψ−(z)
ψ′

+(z)
ψ′

−(z)

 = A

ψ+(0)
ψ−(0)
ψ′

+(0)
ψ′

−(0)

 (12)

A =
1

4


eS1z e−S1z eS3z e−S3z

µeS1z µe−S1z −µeS3z −µe−S3z

S1e
S1z −S1e

−S1z S3e
S3z −S3e

−S3z

µS1e
S1z −µS1e

−S1z −µS3e
S3z µS3e

−S3z



1 1

µ
1
S1

1
µS1

1 1
µ

−1
S1

−1
µS1

1 −1
µ

1
S3

−1
µS3

1 −1
µ

−1
S3

1
µS3

 (13)

A =
1

4


1 1 1 1

µ µ −µ −µ
S1 −S1 S3 −S3

µS1 −µS1 −µS3 µS3


l


eS1z 0 0 0

0 e−S1z 0 0

0 0 eS3z 0

0 0 0 e−S3z



1 1

µ
1
S1

1
µS1

1 1
µ

−1
S1

−1
µS1

1 −1
µ

1
S3

−1
µS3

1 −1
µ

−1
S3

1
µS3

 (14)

which is valid for any translation z over a region of constant
scattering length density (and therefore µ, S1 and S3), and
is identical to the matrix in Eq. 128 of [1].

Because the wavefunction and first derivatives are con-
tinuous over any boundary, one can then use this transfer
matrix to “advance” the wavefunction through an arbitrary
number of layers, recalculating the matrix at each interface
so that S1, S3 and µ are appropriate for the current layer.

Ψl =

(
1∏

l=N

Al

)
Ψ0 (15)

Using the additional boundary condition that the incident
wave only comes from one direction, i.e.

C2,N = C4,N = D2,N = D4,N ≡ 0 (16)

one can use this matrix product to calculate the reflectivity
terms r++, r+−, r−+, r−−.

CONSTRUCTION OF TRANSFER MATRIX IN TERMS
OF C COEFFICIENTS

It is possible to make an equivalent transfer matrix for
the coefficients Cj , since they contain the same informa-
tion as Ψ.

In order to do so we note that on either side of a boundary
(between layer l and layer l + 1)

Ψ(z)l = Ψ(z)l+1 (17)

and plugging into Eq. 8


eS1z e−S1z eS3z e−S3z

µle
S1z µle

−S1z −µle
S3z −µle

−S3z

S1e
S1z −S1e

−S1z S3e
S3z −S3e

−S3z

µlS1e
S1z −µlS1e

−S1z −µlS3e
S3z µlS3e

−S3z


l

C1

C2

C3

C4


l

=


eS1z e−S1z eS3z e−S3z

µle
S1z µle

−S1z −µle
S3z −µle

−S3z

S1e
S1z −S1e

−S1z S3e
S3z −S3e

−S3z

µlS1e
S1z −µlS1e

−S1z −µlS3e
S3z µlS3e

−S3z


l+1

C1

C2

C3

C4


l+1

(18)

Applying the inverse matrix of the RHS gives a new 4×4
matrix B that transfers Cj,l to Cj,l+1.C1

C2

C3

C4


l+1

= Bl

C1

C2

C3

C4


l

(19)



3

Bl =
1

4


e−S1z 0 0 0

0 eS1z 0 0

0 0 e−S3z 0

0 0 0 eS3z


l+1


1 1

µ
1
S1

1
µS1

1 1
µ

−1
S1

−1
µS1

1 −1
µ

1
S3

−1
µS3

1 −1
µ

−1
S3

1
µS3


l+1


1 1 1 1

µ µ −µ −µ
S1 −S1 S3 −S3

µS1 −µS1 −µS3 µS3


l


eS1z 0 0 0

0 e−S1z 0 0

0 0 eS3z 0

0 0 0 e−S3z


l

(20)

TABLE I. Elements of the B-matrix, which transfers Cj,l →
Cj,l+1

B11 = 1
4e

(S1,l−S1,l+1)z
(
1 + µl

µl+1
+

S1,l

S1,l+1
+

µlS1,l

µl+1S1,l+1

)
B12 = 1

4e
(−S1,l−S1,l+1)z

(
1 + µl

µl+1
− S1,l

S1,l+1
− µlS1,l

µl+1S1,l+1

)
B13 = 1

4e
(S3,l−S1,l+1)z

(
1− µl

µl+1
+

S3,l

S1,l+1
− µlS3,l

µl+1S1,l+1

)
B14 = 1

4e
(−S3,l−S1,l+1)z

(
1− µl

µl+1
− S3,l

S1,l+1
+

µlS3,l

µl+1S1,l+1

)
B21 = 1

4e
(S1,l+S1,l+1)z

(
1 + µl

µl+1
− S1,l

S1,l+1
− µlS1,l

µl+1S1,l+1

)
B22 = 1

4e
(−S1,l+S1,l+1)z

(
1 + µl

µl+1
+

S1,l

S1,l+1
+

µlS1,l

µl+1S1,l+1

)
B23 = 1

4e
(S3,l+S1,l+1)z

(
1− µl

µl+1
− S3,l

S1,l+1
+

µlS3,l

µl+1S1,l+1

)
B24 = 1

4e
(−S3,l+S1,l+1)z

(
1− µl

µl+1
+

S3,l

S1,l+1
− µlS3,l

µl+1S1,l+1

)
B31 = 1

4e
(S1,l−S3,l+1)z

(
1− µl

µl+1
+

S1,l

S3,l+1
− µlS1,l

µl+1S3,l+1

)
B32 = 1

4e
(−S1,l−S3,l+1)z

(
1− µl

µl+1
− S1,l

S3,l+1
+

µlS1,l

µl+1S3,l+1

)
B33 = 1

4e
(S3,l−S3,l+1)z

(
1 + µl

µl+1
+

S3,l

S3,l+1
+

µlS3,l

µl+1S3,l+1

)
B34 = 1

4e
(−S3,l−S3,l+1)z

(
1 + µl

µl+1
− S3,l

S3,l+1
− µlS3,l

µl+1S3,l+1

)
B41 = 1

4e
(S1,l+S3,l+1)z

(
1− µl

µl+1
− S1,l

S1,l+1
+

µlS1,l

µl+1S1,l+1

)
B42 = 1

4e
(−S1,l+S3,l+1)z

(
1− µl

µl+1
+

S1,l

S1,l+1
− µlS1,l

µl+1S1,l+1

)
B43 = 1

4e
(S3,l+S3,l+1)z

(
1 + µl

µl+1
− S3,l

S1,l+1
− µlS3,l

µl+1S1,l+1

)
B44 = 1

4e
(−S3,l+S3,l+1)z

(
1 + µl

µl+1
+

S3,l

S1,l+1
+

µlS3,l

µl+1S1,l+1

)

The components ofB are listed in Table I. While this ap-
proach doesn’t reduce the complexity of the calculation of
r and t, it does offer advantages in the case of DWBA prob-
lems; no extra work is done converting between Ψ and Cj

at every layer, and the DWBA terms depend on
∫ zl+1

zl
Ψ(z)

which is much easier to calculate as
∫ zl+1

zl

∑
j Cj,le

Sj,lz

than
(∫ zl+1

zl
Al(z)

)
Ψ(z = zl).

The calculation of r can by setting the incident polariza-
tion to ±1 and using the equations

C2,N = B21C1,0 +B22C2,0 +B23C3,0 +B24C4,0 ≡ 0
C4,N = B41C1,0 +B42C2,0 +B43C3,0 +B44C4,0 ≡ 0

(21)

noting that

C1,0 ≡ I+
C2,0 ≡ r+
C3,0 ≡ I−
C4,0 ≡ r−

(22)

giving expressions for r

r++ = B24B41−B21B44

B44B22−B24B42

r+− = B21B42−B41B22

B44B22−B42B24

r−+ = B24B43−B23B44

B44B22−B24B42

r−− = B23B42−B43B22

B44B22−B42B24

(23)

then the transmission can be calculated, since we now
know all the Cj,0, and

t+ ≡ C1,N

t− ≡ C3,N
(24)

ROTATION OF REFERENCE FRAME

The equations in the previous section were derived in
a single reference frame, which for the sample is defined
by convention to have ẑSAM ‖ ~Q. Given that the ẑ direc-
tion is also by convention the quantization axis for spin, we
have to apply a transformation if the lab quantization axis
(ẑLAB ‖ ~Hguide) is not collinear with ẑSAM.

In order to mate the laboratory reference frame to the
sample one, we have to do a rotation. As per Eq. 3.2.46 in
[2], a spinor is rotated about an axis according to

χ→ exp

(
−iσ · n̂φ

2

)
χ (25)

The rotation matrix around the x̂-axis is (as in [1])

UR =

 cos(ε/2) i sin(ε/2) 0 0
i sin(ε/2) cos(ε/2) 0 0

0 0 cos(ε/2) i sin(ε/2)
0 0 i sin(ε/2) cos(ε/2)


(26)

The wavefunction in the incident medium has no cou-
pling between ψ+ and ψ− when ρ+−, ρ−+ = 0. In prac-
tice, we take the wavefunction in the incident medium and
rotate it from the lab frame to the sample frame, and then
just inside the first layer of the sample we can calculate the
Cj .
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U−1
R ΨLAB = ΨSAM

χ−1U−1
R ΨLAB = χ−1ΨSAM =

(
Cj

)
(27)

If one wishes to calculate the wavefunction in the labo-
ratory frame throughout the sample, within each layer the
solutions for Cj can transferred to the lab frame by noting
that(
ψ+(z)
ψ−(z)

)
LAB

= UR

(
ψ+(z)
ψ−(z)

)
SAM

=

(
cos(ε/2)[

∑
j Cje

Sjz] + i sin(ε/2)[
∑

j µjCje
Sjz]

i sin(ε/2)[
∑

j Cje
Sjz] + cos(ε/2)[

∑
j µjCje

Sjz]

)
(28)

and collecting terms that all have the same eSjz depen-
dence, we get

C↑
j,LAB = (cos(ε/2) + iµj sin(ε/2))Cj,SAM

C↓
j,LAB = (µj cos(ε/2) + i sin(ε/2))Cj,SAM

(29)

Within the DWBA layer-by-layer calculations, of course,
the reference frame doesn’t matter as long as 〈ψf | and |ψi〉
are in the same reference frame, and it will be easiest to use

the
(
Cj

)
in the sample frame.
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